Autonomous Robot Dancing Driven by Beats and Emotions of Music

Gus (Guangyu) Xia Junyun Tay Roger Dannenberg Manuela Veloso

Carnegie Mellon University, AAMAS2012

Introduction: Goal

- Context: Many robot dances are preprogrammed
- Idea: How about automating the task?
- Our goal:

Given a piece of music, we want to automatically generate a robot dance

The dance should be interesting, safe, reflecting the emotion, and synchronized to the beats of music.

Introduction: General approach

Notice: the dancing plan is created offline, and then executed and synchronized with music audio

Outline

- Introduction
- Motion primitives
- Music content analysis
- Dancing plan
- Execution
- Demo
- Conclusion

Motion primitives (MPs)

Robot we use

- NAO
- Stand-alone autonomous robot
- 21 joints
- Four catalogs: Head, Left Arm, Right Arm, Legs
- For each catalog, we build its own MPs library

Motion primitives: properties

- Large variety of combinations
- Allow speed change
- Safe to execute
- Convey emotions

Motion primitives: Variety

- In order to maximize variety of the combination of Motion Primitives:
- Design the library for four catalogs independently
 - Head: 8, Left Arm: 9, Right Arm: 9, Legs: 26
- Execute the four catalogs simultaneously
- Though we only designed 52 MPs in total, there are thousands of possible combinations at each time while execution.

Motion primitives: Parameterization

Motion primitive = sequence of keyframes

- In order to allow speed change:
- A single stretching parameter β
- If t₁ =0, the parameterized motion primitive is

$$\begin{bmatrix} K_1 & K_2 & K_3 & K_4 & K_5 \\ t_1 & \beta t_2 & \beta t_3 & \beta t_4 & \beta t_5 \end{bmatrix}$$

Motion primitives: Safety

- In order to make sure MPs are safe execute:
- Define Minimum Interpolation Time (MIT) between keyframes and force execution time larger than MIT
- Case 1: Within a MP:
 - MIT is designed as difference between two contiguous time stamps, so that $\beta\,$ is no less than 1
- Case 2: Between two MPs:
 - MIT is from the last keyframe of current MP to the first keyframe of next MP: $dist_M(M_n, M_{n+1})$

Motion primitives: Emotion Label

- In order to get conveyed emotions:
- Automatically label the emotion of MPs based on a pre-labeled keyframe library
- For each keyframe
- ...find nearest static pose in our pre-labled library, return their emotions
- Use a weighted sum of emotions to estimate emotion of the motion primitive

Example: Static Postures Vs. MPs

Music Content Analysis

- We want to extract emotion and beat times from music, to use as cues for the robot dance.
- MPs should convey the emotions of music
- MPs should be synchronized with the beat of music

Music Content Analysis: Emotion

Byeong-jun Han, et al. (2009) SMERS: Music Emotion Recognition by using SVR

One more step: use a 30-seond sliding window to compute the trajectory of music emotion

Robot Dance - AAMAS2012

A/V value of emotions on the 2-D plane

Emotion	Activation	Valence
Нарру	1	1
Sad	-1	-1
Angry	1	-1
Surprised	1	0
Fear	0.5	-1
Disgust	-0.5	-0.5

• Metric of emotion similarity: $dist_{E}(E(M), e)$

- The Euclidian distance on the 2-D plane
- E(M) : emotion of the motion primitive M
- *e* : emotion of the music

Music Content Analysis: Beat

Periodicity estimation using autocorrelation Search for roughly equally spaced peaks using DP

Dan Ellis (2007), Beat Tracking by Dynamic Programming

Dancing Plan

- We have got music information and MPs
- Combine them to generate a sequence of MPs
- Nondeterministic, Smooth, Emotional, Synchronized
- Solution: Sampling from a stochastic process

• A generative model, sequentially generating MPs by drawing samples from $p(M_{n+1} | M_n, e_{n+1})$

Dancing Plan: To define $p(M_{n+1} | M_n, e_{n+1})$

- Nondeterministic
- Smooth:
 - Continuity from one motion primitive to the next
 - Continuity Factor: $CF = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{dist_M^2(M_n, M_{n+1})}{2\sigma_M^2}\}$
- Emotional:
 - Considering the music, MPs should reflect the emotion of music.
 - Emotion Factor : $EF = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{dist_E^2(E(M_n), e_n)}{2\sigma_E^2}\}$
- **Definition:** $p(M_{n+1} | M_n, e_{n+1}) = CF \cdot EF \cdot N$
- Synchronized: stretch selected MP, making its last keyframe end on a beat time

Robot Dance - AAMAS2012

Dancing Plan: Review

- For each catalog, we iteratively:
 - Get the detected emotion at the end of current motion primitive, e_{n+1}
 - Draw a new motion primitive, M_{n+1} , from the generative distribution $p(M_{n+1} | M_n, e_{n+1})$
 - Stretch M_{n+1} to end on nearest future beat time

Execution

- Even if the planned timing is perfect, there are latency and other execution time errors
- Solution: Real time synchronization algorithm to overcome time drifting
- At each step while execution, iteratively:
 - Check the timing and then re-schedule next step

Video Demo

Conclusion and acknowledgements

Conclusion

- An approach to automate robot dancing, based on matching parameterized MPs to music features
- Nondeterministic, Smooth, Emotional, and Synchronized with music
- A complete demonstration with a NAO humanoid robot with multiple pieces of music.
- The scheme generalizes to other robots
- Acknowledgements
 - Byeong-jun Han
 - Somchaya Liemhetcharat

M_r

Synchronized with music beats

- Just stretch the selected motion primitive, making its last keyframe ending on a beat time
- Make sure:
 - Interval is no less than $dist_M(M_n, M_{n+1})$
 - β is no less than 1

