Spectral Learning for Expressive Interactive Ensemble Music Performance

Gus (Guangyu) Xia Yun Wang Roger Dannenberg Geoffrey Gordon

School of Computer Science Carnegie Mellon University

Introduction: Musical background

Interaction

Introduction: Technical background

Expression

Expressive Performance Rendering

Interaction

Score Following and Automatic Accompaniment

Expressive Interactive Performance

Introduction: Problem Overview

For interactive ensemble music performance, how can we build artificial performers that automatically improve their ability to sense and respond to human musicians' expression with rehearsal experience?

- We start from piano duets
- Focusing on expressive timing and dynamics
- Model expressions as co-evolving time series
- Use Spectral Learning

Outline

- Introduction
- Data Collection
- Method
- Demos
- Future Work & Conclusion

Data Collection

- Musicians:
 - 10 music graduate students play duet pieces in 5 pairs.
- Music pieces:
 - 3 pieces of music are selected, Danny boy, Serenade (by Schubert), and Ashokan Farewell.
 - Each pair performs every piece of music 7 times.
- Recording settings:
 - Recorded by electronic pianos with MIDI output.

Base line

Linear extrapolation based on previous notes :

Spectral Learning for Linear Dynamic System

Model:

$$z_t = Az_{t-1} + Bu_t + w_t \quad w_t \sim \mathcal{N}(0, Q)$$

$$y_t = Cz_t + Du_t + v_t \quad v_t \sim \mathcal{N}(0, R)$$

timing + dynamics

Spectral Learning(1): Oblique projections

$$\mathbb{E}(Y_F) = \left[\beta_{Y_H} \, \beta_{U_H} \, \beta_{U_F}\right] \begin{bmatrix} Y_H \\ U_H \\ U_F \end{bmatrix}$$

- We don't know the future.
- Partially explain future observations based on the history

$$\widehat{Y}_F \stackrel{\mathrm{def}}{=} [\widehat{eta}_{Y_H} \, \widehat{eta}_{U_H} \, 0] \, \begin{vmatrix} Y_H \\ U_H \\ 0 \end{vmatrix}$$

Spectral Learning(2): State estimation

$$z_t = Az_{t-1} + Bu_t + w_t$$
$$y_t = Cz_t + Du_t + v_t$$

$$\tilde{Y}_F = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \end{bmatrix} z_{t+1}$$

States estimation by SVD

$$\widetilde{Y}_F = \mathcal{U}\Sigma\mathcal{V}^T = (\mathcal{U}\Sigma^{\frac{1}{2}})(\Sigma^{\frac{1}{2}}\mathcal{V}^T)$$

Moreover, enforce a bottleneck by throwing out near-zero singular values and corresponding columns in U and V.

Spectral Learning(3): Estimate parameter

$$z_{t} = Az_{t-1} + Bu_{t} + w_{t}$$

$$w_{t} \sim \mathcal{N}(0, Q)$$

$$y_{t} = Cz_{t} + Du_{t} + v_{t}$$

$$v_{t} \sim \mathcal{N}(0, R)$$

Based on estimated hidden states, the parameters could be estimated from the following equation:

$$\begin{bmatrix} \hat{Z}_f^- \\ Y_f \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \hat{Z}_f \\ U_f \end{bmatrix} + \begin{bmatrix} e_w \\ e_v \end{bmatrix}$$

Result: An example

BL: Base-line Linear extrapolation

LDS: Spectral Learning (ONLY 4 rehearsals!)

Result: Overall

LR: Linear regression NN: Neural network

Audio Demo

■ Base Line:

Spectral Learning: 4 training examples

Conclusion

- An artificial performer for interactive performance using spectral learning
- A combination of expressive performance and automatic accompaniment
- Generate more human-like interactive performance just based on 4 rehearsals

Future Work

- Cross-piece models (in progress)
- Plugin with music robots (in progress)
- Online learning and decoding

Thanks!

Result: Performers effect

Neural Network

Model:

$$z_{t} = f(W_{1}u_{t} + b_{1})$$

$$y_{t} = W_{2}z_{t} + b_{2}$$

$$f(x) = \begin{cases} x, & (x > 0) \\ 0, & (x \le 0) \end{cases}$$

- 10-dimensional hidden layer
- Objective function: mean absolute error
- 30 epochs of SGD training
- Learning rate decays from 0.1 to 0.05 exponentially

Audio Demo

Base Line:

Note-specific approach: 34 training examples

General feature approach: 4 training examples

■ LDS approach: 4 training examples

