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Introduction: Technical background

Musicianship Interaction
Expressive Score following
Performance and automatic

accompaniment

\ /

Expressive Interactive Performance




Introduction: Problem definition

For interactive music performance, how can we build
artificial performers that automatically improve their
ability to sense and coordinate with human
musicians’ expression with rehearsal experience?

- .

m How to interpret the music based on the expression
of human musicians?

m How to distill models from rehearsals?
m What are the limits of validity of the learned models?
m How many rehearsals are needed?

We start from piano duets, focusing on expressive
timing and expressive dynamics.
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Current Data Collection

m Musicians:
= 10 music master students play duet pieces in 5 pairs.
m Music pieces:

= 3 pieces of music are selected, Danny boy, Serenade
(by Schubert), and Ashokan Farewell.

= Each pair performs every piece of music 7 times.
m Recording settings:
= Recorded by electronic pianos with MIDI output.
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Method Overview

m From “local” to “general’

= Local: low-dimensional feature space, only apply to
certain notes

= General: high-dimensional feature space, apply to the
whole piece of music

m Base line:
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Method (1): Note-specific approach

m ldea:
= Expressive timings of the notes are linearly correlated.

* Predict the expressive timing of 2"d piano by the
expressive timing of 18t piano.
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Result: Note-specific approach

Mean Absolute Error:

BL: 0.098 Note-8: 0.087 Note-34: 0.060
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Method (2): Rhythm-specific approach

m ldea:
= Notes with same score rhythm context share parameters.

= |ntroduces an extra dummy variable to encode the score
rhythm context of each note .
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Result: Rhythm-specific approach

Mean Absolute Error:
BL: 0.098 Rhythm-4: 0.084 Rhythm-8: 0.067
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Method (3): General feature approach

m |dea:
= Make the model more general.

= Predict the expressive timing by considering more
than score rhythm context .

Pitch
Score 1¢ piano Note U=luy,uy, ..., uyl
Timing
Performance 2" piano Phrase |y — [}’1; Vay e }’M]
Dynamic
= Model:
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Regularization: Group Lasso

m ldea:
= Reduces the burden for training.

= Discover the dominant features that could predict the
expressive timings.

m Solve:

mln (||Y BU||2+Az\/_||Bz||2)
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Result: General feature approach

Mean Absolute Error: (ONLY 4 training pieces!)

BL: 0.098 LR: 0.072 Glasso: 0.059
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Method (4): LDS approach

m ldea:
= Add another regularization by adjacent notes.

= | ower dimensional hidden mental states that
control the expressive timings.
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m Model:
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Result: LDS (horizontal regularization)

Mean Absolute Error: (ONLY 4 training pieces!)
BL: 0.085 LR: 0.072 LDS: 0.067
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A Global View
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Some Initial Audio Demo
m Base Line:

m Note-specific approach: 34 training examples
m General feature approach, group lasso: 4 training
examples
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Future Work

m Cross-piece models

m Performer-specific models

m Online learning and decoding
m Plugin with music robots
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Conclusion

m An artificial performer for interactive performance
m Learn musicianship from rehearsal experience

m A combination of expressive performance and
automatic accompaniment

m Much better prediction just based on 4 rehearsals
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Spectral Learning(1): Oblique projections
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m We don’t know the future.

m Partially explain future observations based on the

history Y,
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Spectral Learning(2): state estimation

C
def CA
Z Ziiq YF = I}Zf = CAZ Zf
Y Yir1

m States estimation by SVD

YF —_ UZVT —_

m Moreover, enforce a bottleneck by throwing out
near-zero singular values and corresponding
columns in U and V.
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Spectral Learning(3): Estimate parameter
@ @ @ Ziy1 = Az + Buy + wy

Z, Z, _> WtNN(O; Q)
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m Based on estimated hidden states, the parameters
could be estimated from the following equation:
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