
Duet Interaction: Learning Musicianship for Automatic 
Accompaniment 

 
 

Guangyu Xia  
Carnegie Mellon University 

School of Computer Science 
5000 Forbes Ave, Pittsburg, PA 

 gxia@cs.cmu.edu 

  
Roger B. Dannenberg 
Carnegie Mellon University 

School of Computer Science 
5000 Forbes Ave, Pittsburgh, PA 

 rbd@cs.cmu.edu 
 
 

ABSTRACT 
Computer music systems can interact with humans at different levels, 
including scores, phrases, notes, beats, and gestures. However, most 
current systems lack basic musical skills. As a consequence, the 
results of human-computer interaction are often far less musical than 
the interaction between human musicians. In this paper, we explore 
the possibility of learning some basic music performance skills from 
rehearsal data. In particular, we consider the piano duet scenario 
where two musicians expressively interact with each other. Our work 
extends previous automatic accompaniment systems. We have built 
an artificial pianist that can automatically improve its ability to sense 
and interact with a human pianist, learning from rehearsal experience. 
We describe different machine learning algorithms to learn aspects of 
expressive timing and dynamics for duet interaction, explore the 
properties of the learned models, such as dominant features, limits of 
validity, and minimal training size, and claim that a more human-like 
interaction is achieved.  
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1. INTRODUCTION 
Computer music systems have achieved a wide spectrum of 
application in music performance, ranging from fixed media to 
free improvisation. The broad range of practice includes Music 
Minus One (fixed media), score following & automatic 
accompaniment, human-computer music performance, and 
interactive computer music. These systems interact with humans at 
different levels, such as scores, phrases, notes, beats, and gestures. 
However, since most current systems lack representations and 
capabilities of musicianship, the human-computer interaction is often 
far less musical than the interaction between human musicians. We 
aim to explore the possibility to empower current computer music 
systems with musical skills and knowledge. In this paper, we focus 
on the piano duet scenario in which two pianists expressively interact 

with each other. The goal is to incorporate musicianship into the 
existing framework of automatic accompaniment systems, extending 
the system’s ability from passive synchronization to mimicking the 
behavior of ensemble musicians. Of course, our system does not 
learn all aspects of musicianship. The current system learns aspects 
of expressive timing and dynamics, and we believe other aspects of 
musicianship can also be learned in a similar way.  
 This exploration can be seen as a marriage of two existing fields of 
research: expressive performance, which studies how musicians vary 
timing and other parameters in music performance, and automatic 
accompaniment, which studies how to create an artificial musician 
that can follow a score and synchronize its performance with 
humans.  
 It is well known that musicians in ensembles interact with each 
other to achieve a shared musical performance. The art for the 
musicians is not only to interpret the music on their own, but 
also to keep in concert with each other by continuously 
adjusting timing, dynamics, etc. To sense and interact with each 
other’s musical expression is both important and difficult, so 
musicians spend much time together in rehearsals. It is through 
rehearsals that musicians become familiar with each other’s 
music interpretation and create their own expressive response. 
This procedure of learning musical interaction through 
rehearsal suggests that a computer system could be trained in a 
similar way by using machine learning algorithms. To be more 
precise, we look forward to answering the following research 
question: 
How can we build an artificial performer that, with rehearsal 
experience, automatically improves the ability to sense and interact 
with a human musician’s expression, and what are the fundamental 
laws that govern the learning processes? 
 There are many issues to be addressed. First of all, within each 
performance, how should the artificial performer choose the 
expressive parameters for each note based on the expression of the 
human musician? E.g., should the artificial performer completely 
follow the human musician’s tempo, keep steady, or even behave to 
the contrary? Second, how can we design machine-learning 
algorithms to distill the models from rehearsal experience? In other 
words, how can we learn regularity from seemingly irregular data? 
Third, what are the dominant features that affect the expressive 
interaction? E.g., is expressive timing affected more by rhythm or by 
melody? Fourth, what are the limits of validity of the learned 
models? E.g., which model generalizes across the whole piece of 
music and which model only works for some specific score 
locations? Last but not least, how many rehearsals are needed to train 
the artificial performer; would the number be reasonable in practice?  
 To answer these questions, we conduct research in four phases. 
First, features are extracted to represent the music expression of both 
musicians. Second, function approximations are designed to reveal 
the relationship between one’s music expression and the other’s.  
Third, different properties of the algorithms, such us dominant 
features, models’ limits of validity, and minimum training size are 
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explored. Finally, given only one musician’s performance, the 
performance of the artificial performer is synthesized by using 
learned models, based on which evaluation is done. 
 The next section presents related work. Section 3 describes the data 
collection. Section 4 introduces a spectrum of algorithms to learn 
musicianship from rehearsal data. In Section 5, we present 
experimental results. 

2. RELATED WORK 
We review two realms of related work in computer music, 
which are Score Following and Automatic Accompaniment and 
Expressive Performance. The former one focuses on human-
computer interactive performance, while the latter one focuses 
on musical expression. The two realms have been pursued for 
about 30 years but never really informed each other; this study 
could be seen as a marriage of the two. 

2.1  Score Following and Automatic 
Accompaniment 

In 1984, score following and automatic accompaniment 
systems were independently introduced by Dannenberg [8] and 
Vercoe [26]. Given a pre-defined music score, the system is 
able to follow a musician’s monophonic performance in real 
time and output the accompaniment by strictly following the 
musician’s tempo. Dannenberg’s work was soon 
commercialized by SmartMusic and has been used by 
thousands of students for music practice. Ever since then, many 
extensions [2, 6, 7, 9, 15, 16] have been made by Dannenberg 
and his collaborators. Bloch and Dannenberg developed fast 
methods for following polyphonic performance input; Grubb 
and Dannenberg [15] extended this idea further to handle 
ensemble performance input. Later on, Grubb and Dannenberg 
[16] developed the first stochastic method for tracking vocal 
performer. More recently, several advanced probabilistic 
models have been introduced [6, 7, 19] for more robust score 
following.  
 Despite all of these efforts, most attention has been given to 
the “score following” part of the system, while the musical 
expression or the “automatic accompaniment” part has been 
overlooked. As a consequence, while “score following” has 
already become a more-or-less solved problem, recent systems 
still compute accompaniment timing by score-performance 
time mapping and extrapolating to the next note (which was 
introduced 30 years ago). In other words, computer systems are 
still “passive” in the sense that they do not have any particular 
knowledge about performance to actively predict human 
behavior and make choices on music interpretation. By looking 
back to Dannenberg’s original work, it was clearly stated at the 
beginning of the “Limitations” section that, “the present set of 
algorithms make no attempt to adjust tempos in a particularly 
musical manner… Furthermore, no effort has been made to 
respond to the soloist in any way other than temporally. For 
example, a human accompaniment is expected to respond to 
loudness, articulation, and other nuances in addition to 
temporal cues.”  
 Raphael’s Music Plus One [19] and IRCAM’s AnteScofo 
system [6] consider the accompaniment problem. The former 
one trains a Bayesian network by rehearsals to achieve more 
precise synchronization; the latter one uses a synchronization 
model based on Large’s work [18] to achieve more natural 
tempo adjustment. However, the perspective is still limited to 
temporal synchronization; the computer’s active role in shaping 
different musical expression is not yet considered.  

2.2 Expressive Performance 
The discipline of expressive performance studies how to 
convert static scores into human-like expressive performances 

by different computational models (See [17] and [29] for 
comprehensive overviews.) The models fall into three main 
categories, which are rule-based modeling, case-based 
modeling, and probabilistic modeling. Generally speaking, 
probabilistic modeling works better than the others, and there is 
evidence that even better performance can be achieved by 
combining different models. 
 Rule-based systems, appearing in the early 1980s, generate 
performances based on defined or discovered performance rules 
[11, 12, 20, 21, 23-28]. Sundberg and his collaborators built the 
well-known KTH model by an innovative “analysis-by-
synthesis” approach in which musicians and researchers 
worked together in a crowdsourcing way [20, 21]. Others 
discover rules by collecting measurements from actual 
performance data. Among them, Todd [23, 24] focused on the 
relationship between music structure and performance. Widmer 
developed various data mining methods [27, 28] to discover 
rules from data automatically. Since the late 1990s, cased-based 
reasoning systems have appeared, which generate performances 
by adopting previous performance examples. Two 
representative ones are the SaxEx system [1] developed by 
Arcos etc., and DISTALL system [30] developed by Widmer 
and Tobudic.  
 More recently, we see probabilistic modeling systems [10, 
14]. These systems model the conditional probabilistic 
distribution of the performance given the score, and then 
generate new performances by sampling from the learned 
models. From the machine learning perspective, the underlying 
graphical models used in these studies serve as good basis for 
this study. Notice that the foci are quite different. These 
systems focus on the relationship between score and 
interpretation, while this paper focuses on the interaction 
between different interpretations.  

3. DATA COLLECTION 
Musicians: We invited 10 graduate students from the School of 
Music in our university to perform duet pieces in 5 pairs. 
 
Music pieces: We selected 3 pieces of music – Danny Boy, 
Serenade (by Schubert), and Ashokan Farewell – based on their 
suitable length and difficulty for recording. Each pair of 
musicians performed every piece of music 7 times with 
instructions to use different interpretations. Therefore, for each 
piece of music, we have collected 5 × 7 = 35 performances. In 
total, we have collected 35 × 3 = 105 performances. 
 
Recording settings: Musicians performed the music by sitting 
face to face. Pieces were recorded using electronic pianos with 
MIDI output, therefore all the parameters (dynamics, starting 
time, ending time, pedal) of every note can be recorded 
accurately in real time. 
  
Recording procedures: Musicians warm up by practicing the 
pieces for about 10 minutes together and then start recording. 
Each recording session records about 15 performances and lasts 
for about 1 hour. 

4. METHODOLOGY 
Different function approximations are designed to model the 
relationship between one pianist’s music expression and 
another’s. We start from very low-dimensional representation 
and local models that only apply to certain notes in music, and 
gradually step to high-dimensional representation and more 
general models that can apply to the whole piece of music. 
 Based on the learned models, an artificial performer will be 
able to generate (decode) its own music expression by 
interacting with a human pianist. For piano notes, music 



expression is encoded by timing, dynamics, and pedal position. 
(I.e., once we know these parameters, we can re-synthesize the 
note.) In this paper, we consider timing features and dynamics 
features. We focus mainly on timing prediction. Dynamics 
prediction uses very similar steps, so we only include a brief 
description of our work on dynamics. 

4.1 Expressive Timing 
4.1.1 Baseline approach 
We use the timing estimation algorithm in [8] as the baseline 
for comparison to new techniques. As shown in Figure 1, we 
estimate a linear mapping between real time and reference time 
(usually score time, in beats) by fitting a straight line to 
recently performed and recognized note onsets. This mapping 
can be used to estimate the time of the next note. To make a 
more fair comparison, we also consider rehearsal performances 
for the baseline algorithm. Rather than directly taking the score 
as the reference, we use the “median performance” of the 
rehearsals. 

 
Figure 1. Baseline approach of timing estimation. 

Here, we also define Expressive timing as the timing difference 
between actual performance time and the baseline algorithm’s 
predicted performance time by using the score as reference. 
The expressive timing tells us how much the actual 
performance timing differs from the score trend. 

4.1.2 Note-specific approach 
The note-specific approach assumes that expressive timing of 
the notes is linearly correlated so that we can predict a note’s 
expressive timing based on the expressive timing of previous 
notes. Intuitively, we assume that when musicians slow down, 
speed up, or use rubato, there are certain patterns of expressive 
timing that can be characterized by linear regression. Formally, 
let 𝑋 = [𝑥!, 𝑥!,… , 𝑥!] be the expressive timing of the notes 
played by the 1st pianist; let 𝑌 = 𝑦!, 𝑦!,… , 𝑦!  be the 
expressive timing of the notes played by the 2nd pianist. (N and 
M are note indices). Then the model is: 

𝑦! = 𝛽!
!! + 𝛽!

!!𝑥!"#$(!!)!!                                                     
!

!!!

(1) 

Here, p is the lag parameter and 𝑥!"#$(!!)!! are the p note times 
in X previous to 𝑦!. Thus, 𝑜𝑣𝑒𝑟 𝑦!  is the smallest index of the 
element of X whose score time is greater or equal to the score 
time corresponding to 𝑦!. For example, in Figure 2, let the 1st 
and 2nd systems be the score for the 1st and 2nd piano, 
respectively. If the note in the dotted circle corresponds to 𝑦! 
and the lag parameter p is equal to 3, the notes in the circle 
would corresponds to 𝑥!"#$(!!)!!. 
 It is important to notice that the note-specific approach trains 
a different set of parameters for each note, which is reflected by 
the superscript of 𝛽. The advantage of this approach is that each 
note gets a tailored solution, while the disadvantage is that 
many training rehearsals are needed. 

 
Figure 2. An illustration of the note-specific approach. 

4.1.3 Rhythm-specific approach 
To improve the generality of the model, the rhythm-specific 
approach introduces an extra dummy variable to encode the 
score rhythm context of each note. This is mathematically 
equivalent to training a different set of parameters for each 
rhythm context. Intuitively, we assume that notes of the same 
rhythm context share the same pattern of expressive timing. 
Formally, let X and Y be the same as in the note-specific 
approach. The rhythm-specific model is then: 

𝑦! = 𝛽!
!!!"!!(!!,!) + 𝛽!

!!!"!!(!!,!)𝑥!"#$(!!)!!                     (2)
!

!!!

 

where 𝑟ℎ𝑦𝑡ℎ𝑚 𝑦! , 𝑞  is the categorical variable representing 
the rhythm context of the note 𝑦! within q notes. To be more 
precise, the rhythm context of 𝑦! is defined as the inter-onset-
intervals of the q 1st piano’s notes right before 𝑦!. As q increase, 
the possible values of 𝑟ℎ𝑦𝑡ℎ𝑚 𝑦! , 𝑞  will also increase. For 
example, in Figure 3, again let the 1st and 2nd systems be the 
scores for the 1st and 2nd piano, respectively. When q is equal to 
3, the two notes in the dotted circles would share the same 
𝑟ℎ𝑦𝑡ℎ𝑚 𝑦! , 𝑞 . The two notes’ rhythm contexts are shown by 
the circled notes.  

 
Figure 3. An illustration of the rhythm-specific approach. 

It is important to notice that many notes share the same rhythm 
context within a piece of music and hence share the same set of 
parameters. As a consequence, the model can gain more 
information from each rehearsal, and fewer training rehearsals 
are needed compared to the note-specific approach. However, 
this improvement doesn’t apply to some “odd notes” whose 
rhythm contexts are unique. For these notes, the rhythm-
specific approach reduces to the note-specific approach. 

4.1.4 General feature approach 
To further improve the model’s generality and predict the 
expressive timing by more than rhythm context, a more general 
and comprehensive representation is designed. In particular, 
features are designed from four aspects of expressive 
interactive performance, as shown in Figure 4. 

 
Figure 4. The general feature scheme. 



In Figure 4, each column represents an aspect of the feature and 
each line between the columns represents a possible interaction. 
(E.g., notice that there’s no linkage between the “Pitch” block 
and the “Performance” block since pitches are defined in the 
score.) Based on this graph, we extract actual features by going 
through all the possible paths. E.g., the rhythm context feature 
in Section 4.1.3 corresponds to the “Timing-Score-1st piano-
Note” path and the dependent variable Y corresponds to the 
“Timing-Performance-2nd piano-Note” path. In total, we 
exhaust the possible 16 paths and construct a high-dimensional 
feature space. Formally, let 𝑈 = 𝑢!,𝑢!,… ,𝑢!  be the general 
features (dependent variables excluded) of the notes played by 
the 2nd pianist; let 𝑌 = 𝑦!, 𝑦!,… , 𝑦!  be the same as in Section 
4.1.3. The model is: 

𝑌 = 𝛣𝑈                                                                                                   3  
where Y is 1-by-M, B is 1-by-P, and U is P-by-M. P is the 
dimensionality of the feature space. This equation can be 
solved easily by performing Moore-Penrose pseudo-inverse. 
 We further consider the group lasso [13] penalty to find the 
optimal parameter settings by solving the following convex 
optimization problem:  

min
!∈!!

𝑌 − 𝛣𝑈 !
! + 𝜆 𝑝! 𝛣! !

!

!!!

                                             (4) 

where 𝜆 is the penalty parameter, l is the feature group index, 
𝑝!  is the dimensionality of 𝑙!!  feature group, and 𝛣!  is the 
parameters corresponding to the 𝑙!!  feature group. For our 
application, a feature group is defined by a specific path in 
Figure 4. The advantage of group lasso regularization is that it 
not only reduces the burden for training but also tries to 
discover the dominant aspect of interactive performance that 
could be used to predict the expressive timing. 

4.1.5 Linear dynamic system approach  
Our latest effort on expressive timing feature is to link up the 
notes and model them by a time-invariant linear dynamic 
system (LDS). In particular, we assume there exist some low 
dimensional hidden mental states. The mental states change 
smoothly over time and control the expressive timing. 
Intuitively, the LDS approach could be seen as adding another 
regularization to the expressive timing by adjacent notes’ music 
expression. Formally, we adopt the following graphical 
representation: 

 
Figure 5. The graphical representation of the LDS. 

In Figure 5, u and y are the same representations as in Section 
4.1.4, while z represents the hidden state. In LDS, y is referred 
to as observation and u is referred to as input. The evolution of 
this time series can be described by the following equations: 

𝑧! = 𝐴𝑧!!! + 𝐵𝑢! + 𝑤!      𝑤!~𝒩(0,𝑄)                                  (5) 
𝑦! = 𝐶𝑧! + 𝐷𝑢! + 𝑣!                𝑣!~𝒩(0,𝑅)                                    (6) 

To learn the model, we adopted the spectral method [3, 4, 5], 
also known as subspace identification in control theory. 
Generally speaking, the spectral method learns the LDS by 
reduced-ranked partial regressions. Overschee and De Moor 
[25] give a detailed derivation and proof. 

4.2 Expressive Dynamics  
To predict expressive dynamics, we follow almost exactly the 
pipeline of algorithms in Section 4.1 that predict expressive 
timing. Here we just point out the differences. 
 For the baseline approach, the trend of dynamics, unlike the 
trend of timing, is not defined by the score in detail. But we can 
at least figure out the basis dynamic level by looking at the 
performance of the 1st piano. By assuming the dynamics of a 
piece is locally stable, for each note of the 2nd piano, we use its 
previous 1st piano note’s dynamic as our baseline prediction. 
For the other approaches, the notation x (also X) and y (also Y) 
now represent dynamics rather than timing. Other notations and 
all the equations are exactly the same as in Section 4.1. 

5. EXPERIMENTS 
Remember that we have 35 rehearsals for each piece of music. 
To compare the results of different methods and to choose the 
optimal parameters, we use 35-fold cross-validation. The 
measurement is the average (over different performances) of 
absolute timing and dynamics differences between the 
predictions and the ground truths. Therefore, small numbers 
mean better predictions. The maximum possible training size is 
34 (leave-one-out cross-validation). When the training size is 
less than 34, we randomly sample the training performances 
from the rehearsals, excluding the test one. We show both 
detailed results (over score time) and high-level statistics. 
Because of space limitations, we present only detailed timing 
results for Danny Boy. (The other two pieces and dynamics 
feature yield similar results). 

5.1 Note-specific approach for timing 
Figure 6 shows the result of the note-specific approach in 
which the lag parameter p is 4. The curve with diamond 
markers represents the baseline method, the curve with square 
markers represents the note-specific method trained by 8 
rehearsals, and the curve with “x” markers represents the note-
specific method trained by 34 rehearsals. We can see that the 
note-specific method works very well when there are a lot of 
training rehearsals but not so well when the training size is 
reduced to 8. 34 rehearsals is doable but is considered a large 
number in practice.  

 
Figure 6. A zoom-in view of the absolute timing residuals of 

the note-specific approach. 

5.2 Rhythm-specific approach for timing 
Figure 7 shows the result of the rhythm-specific approach in 
which the lag parameter p and rhythm context parameter q are 
both 4. Again, the curve with diamond markers represents the 
baseline method. The curve with square markers represents the 
rhythm-specific method trained by 4 rehearsals, and the curve 
with “x” markers represents the rhythm-specific method trained 
by 8 rehearsals.  
 We can see that when there are 8 training rehearsals, the 
rhythm-specific method improves the performance a lot 
compared to the note-specific method. However, when we 
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shrink the training size to 4, the “odd notes” around 41s are not 
predicted well and in fact are off the scale shown here. 

 
Figure 7. A zoom-in view of the absolute timing residuals of 

the rhythm-specific approach. 

5.3 General feature approach for timing 
With the baseline represented in the same way as previous 
figures, Figure 8 shows the current result of the general feature 
approach with only 4 training rehearsals, in which the 
regularization parameter 𝜆 is 5 and all the features are extracted 
from a local context of 6 to 8 beats. The curve with square 
markers represents the basic regression (without 
regularization), and the curve with “x” markers represents the 
regression with group lasso regularization. We can clearly see 
that with only 4 training rehearsals, basic regression 
outperforms the baseline most of the time. Group lasso 
regularization helps a lot and makes it much better than 
baseline everywhere. 

 
Figure 8. A zoom-in view of the absolute timing residuals of 

the general feature approach. 
An interesting discovery is that group lasso regularization 
almost only retains rhythm context features and performance 
timing features, which indicates that expressive timing is 
mainly affected by rhythm context and not so much affected by 
the pitch. 

5.4 LDS approach for timing 
With the baseline and basic regression represented in the same 
way as the previous figure, Figure 9 shows the current result of 
the LDS approach with only 4 training rehearsals. As pointed 
out in Section 4.1.5, the LDS approach can be seen as adding 
another regularization.  

 
Figure 9. A zoom-in view of the absolute timing residuals of 

the LDS approach. 

We see that this regularization also helps, but not as much as 
group lasso regularization. The possible reason is that the 
current feature settings are optimized for the LDS approach. 
More advanced features can be added for LDS since it can 
handle higher dimensional features.  

5.5 A global view of timing predictions 
For each curve in timing experiments, we take its mean over 
score time to compute a high-level statistic, a single number 
that describes how much on average our timing prediction 
differs from ground truth for each note.  

 
Figure 10. A global view of absolute timing residuals for 

three pieces of music. (Smaller is better.) 
In Figure 10, we show this number for all the three pieces of 
music. Each color corresponds to a piece of music and each bar 
corresponds to a specific method trained by a certain number of 
rehearsals. E.g. the grey bar above Glasso-8 is the result for 
Serenade computed by the group lasso method with 8 training 
rehearsals. We see that the best results are generated by the 
general feature approach with group lasso regularization 
(regardless of the training size). With only 4 to 8 training 
examples, we are able to shrink the timing residuals by 10 to 60 
milliseconds, especially when the baseline algorithm is not 
doing a good job.  

5.6 A global view of dynamics predictions 
Similar to Figure 10, Figure 11 shows how much on average 
our dynamics predictions differ from ground truth for each note. 
Again, we see that the best results are generated by the general 
feature approach with group lasso regularization. With only 4 
to 8 training examples, we are able to shrink the dynamics 
residuals by about 6 in MIDI velocity. 
 We notice that in both Figure 10 and Figure 11, Note-4, i.e., 
note-specific approach trained by only 4 rehearsals, is the worst. 
This is caused by over-fitting since the dimensionality (p+1=5) 
is larger than the training size.  

 
Figure 11. A global view of absolute dynamics residuals for 

three pieces of music. (Smaller is better.) 
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6. CONCLUSIONS AND FUTURE WORK 
In conclusion, we have designed a spectrum of machine learning 
algorithms to learn musicianship for duet interaction from rehearsal 
experience. For both expressive timing and dynamics, we are able to 
use linear models to make much better prediction compared to the 
baseline algorithm, which has served for decades as the basis in 
computer accompaniment systems. With our best algorithms, we see 
improvement using only 4 to 8 rehearsals. Also, we have two 
interesting discoveries. First, expressive timing is highly related to the 
rhythm context, but not affected much by pitch. Second, a 6 to 8 
beats local context leads to the best estimations. Shorter context is not 
informative enough while longer context results in overfitting.  
 In the future, we will continue the work in the following three 
directions: 

Explore deeper into the LDS approach: The current feature 
settings are not optimized for the spectral method. We are going to 
extend the features since spectral methods can handle a much higher 
feature space. Also, we are working on integrating the group lasso 
regularization into the LDS approach. 

Cross-piece models: So far, the most generalized model only 
works within a piece. How can we train the model from some pieces 
and apply it to other pieces? To answer this question, we are going to 
collect more data and design new features. 

Performer-specific models: So far, the models generalize to all 
performers. We are going to consider the individual performer’s 
character in future work. 
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