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ABSTRACT 

Rolled or arpeggiated chords are notated chords per-
formed by playing the notes sequentially, usually from 
lowest to highest in pitch. Arpeggiation is a characteristic 
of musical expression, or expressive timing, in piano per-
formance. However, very few studies have investigated 
rolled chord performance. In this paper, we investigate 
two expressive timing properties of piano rolled chords: 
equivalent onset and onset span. Equivalent onset refers 
to the hidden onset that can functionally replace the on-
sets of the notes in a chord; onset span refers to the time 
interval from the first note onset to the last note onset. 
We ask two research questions. First, what is the equiva-
lent onset of a rolled chord? Second, are the onset spans 
of different chords interpreted in the same way? The first 
question is answered by local tempo estimation while the 
second question is answered by Analysis of Variance. 
Also, we contribute a piano duet dataset for rolled chords 
analysis and other studies on expressive music perfor-
mance. The dataset contains three pieces of music, each 
performed multiple times by different pairs of musicians. 

1. INTRODUCTION 

Rolled (or arpeggiated) chords are notated chords per-
formed by playing the notes sequentially, usually from 
lowest to highest in pitch. It is a common technique and 
an integral part of musical expression. Especially, pianists 
use rolled chords to convey their interpretations of ex-
pressive timings. In a very broad sense, every piano chord 
is rolled since no two notes are played exactly at the same 
time. 

However, very few works have investigated piano 
rolled chords. As a consequence, when dealing with 
chords, most expressive performance studies stick to the 
melody or top note, in part due to a lack of theoretical 
foundations. For example, when analyzing the timing of a 
chord, researchers usually simply take the onset of a cer-
tain note in a chord (e.g., the first note or the highest 
note) as the onset of a rolled chord [4][13] even though 
authors realize this is not the best solution. When synthe-
sizing the timing of a chord, people either put the note 

onsets of a chord at exactly the same time or decode the 
onsets of each note individually [6][15]. This situation 
motivates us to investigate some fundamental properties 
of rolled chords in order to set a better basis for future 
expressive performance studies.  

We investigate two expressive timing properties of pi-
ano rolled chords: equivalent onset and onset span. 
Equivalent onset refers to the hidden onset that can func-
tionally replace the onsets of the notes in a chord; onset 
span refers to the time interval from the first note onset to 
the last note onset. We compute equivalent onset time 
and relative location within a rolled chord via local tempo 
estimation, assuming that local tempo is steady within a 
few beats. To be more specific, we first estimate a linear 
mapping (a tempo map) between real performance time 
and score time for each chord. Then, we compute the 
intersection between the tempo map and the chord’s onset 
span to compute a hidden equivalent onset. Finally, we 
compare the equivalent onset with the note onsets of the 
rolled chord to figure out its relative location. For onset 
span, we focus on a more fundamental statistical prob-
lem: if onset spans are considered random variables, are 
they drawn from the same distribution, or affected by 
different chords or performances? We solve this problem 
by using Analysis of Variance (ANOVA). In our case, 
ANOVA provides a statistical test of whether the means 
of onset spans of different chords are equal.  

The next section presents related work. Section 3 de-
scribes a new data set we created for this study. Section 4 
presents an important data preprocessing (polyphonic 
alignment) procedure. In Sections 5 and 6, we show the 
methodologies for equivalent onset and onset span, re-
spectively. In Section 7, we present experimental results. 

2. RELATED WORK 

We review two realms of related work: polyphonic 
alignment and piano rolled chords. The former is only 
related to our data preprocessing procedure while the 
latter is related to the main goal of our study. 

2.1. Polyphonic Alignment 

Researchers have developed both online and offline poly-
phonic alignment algorithms for both audio and symbolic 
data. Our study uses offline symbolic polyphonic align-
ment based on the MIDI representation. 

For audio-based polyphonic alignment, researchers 
usually first analyze an audio spectrogram to extract 
pitch and timing features and then perform an alignment 

 © Mutian Fu, Guangyu Xia, Roger Dannenberg, Larry 
Wasserman Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Mutian Fu, Guangyu Xia, 
Roger Dannenberg, Larry Wasserman. “A Statistical View on the Ex-
pressive Timing of Piano Rolled Chords.”, 16th International Society 
for Music Information Retrieval Conference, 2015. 



  

 

based on extracted features. Cont [2] uses non-negative 
matrix factorization for polyphonic pitch analysis and 
then uses a hierarchical hidden Markov model to achieve 
the alignment by sequential modeling. Raphael [11] in-
troduces a graphical method to detect latent tempo and 
current position in score. 

Compared to audio-based approaches, symbolic 
alignment is relatively easy since the target files usually 
contain accurate pitch and timing information. Bloch and 
Dannenberg [1] introduce two online algorithms as a part 
of the first polyphonic computer accompaniment system. 
Their work uses pitch information and a rating function 
to find the best fit between performance and score. 
Hoshishiba et al. [8] propose an offline approach by us-
ing dynamic programming and spline interpolation, in 
which dynamic programming is used to find the maxi-
mum match between performance data and score and 
spline interpolation is used to post-process and improve 
the result. A more recent research is done by Chen et al. 
[3], in which two methods are introduced. The first 
method sorts notes in a MIDI file by their onset and then 
uses longest common subsequence to map the perfor-
mance to the score. The second method sets some cor-
rectly matched notes as the pivots, separates note se-
quence by those pivots, and optimizes the result recur-
sively by forward and backward scanning. 

2.2. Piano Rolled Chords Study 

There are fewer studies related to piano rolled chords. 
From an analysis perspective, Repp [12] investigates 
some descriptive properties of arpeggiated chord onsets 
by using a single piece of music. To be more specific, 
this study considers the relative onset timing and inter-
onset-interval within arpeggiated chords. It compares the 
results between the performances by students and experts 
and draws the conclusion that arpeggiating patterns are 
subject to large individual differences. From the synthe-
sis perspective, Kim et al. [9] predict the onsets of a 
rolled chord by first estimating the onset of the highest 
note and then adding intervals for the onsets of succeed-
ing notes. 

3. DATASET  

Besides investigating the equivalent onset time and onset 
span of piano rolled chords, we contribute a piano duet 
dataset for rolled chord analysis and other studies on ex-
pressive music performance [15]. The advantage of duet 
performance is that we are able to access the expressive 
timing from both parts. The dataset currently contains 
three pieces of music: Danny Boy, Serenade (by Schu-
bert), and Ashokan Farewell [7]. Each piece contains a 
monophonic melody part and a polyphonic accompani-
ment part. For the polyphonic part, the three pieces con-
tain 32, 56, and 245 chords, respectively. Each piece is 
performed 35 to 42 times by 5 to 6 different pairs of mu-
sicians (each pair performed each piece of music 7 

times). This dataset is now accessible online via 
www.cs.cmu.edu/~gxia/data.  

4. DATA PREPROCESSING 

Before investigating the equivalent onset and onset span 
of any rolled chord, we have to align the polyphonic pi-
ano performance to the score. This task is done in two 
steps: forward alignment and backward correction.  

Forward alignment: We adopt the online approach used 
by Bloch and Dannenberg [1] for the forward alignment 
step. Generally speaking, the algorithm takes a perfor-
mance as sequential inputs and matches performance 
notes one-by-one to a reference of sorted chords. At each 
step of the alignment, it maximizes the number of 
matched score notes minus the number of skipped score 
notes.  

Backward correction: The forward alignment procedure 
works well for most music, but may cause a problem 
when adjacent chords share the same note. 

 

Figure 1. A piano roll illustration of forward 
alignment procedure. 

As shown in Figure 1, dotted arrows represent correct 
matches while the solid arrow represents the false match. 
In this case, the top note in the 1st chord is skipped in the 
performance and the next chord’s 1st performed note hap-
pens to share the same pitch with the skipped note. As a 
consequence, the 1st chord “borrows” the missing note 
from the 2nd chord. In the worst case, if all the chords 
share the same note, this mismatch behavior could hap-
pen recursively. To address this issue, the backward cor-
rection algorithm starts from the last chord and recursive-
ly recovers the borrowed notes, if any. 

5. EQUIVALENT ONSET 

If we replace all the note onsets of a rolled chord by a 
single onset, where should we place this single onset to 
let it sound most like the original chord? It is reasonable 
to assume that this equivalent onset is hidden within the 
range of the rolled chord’s onset span and has some par-
ticular relationship with the onsets. In this section, we 
first find out the location of the hidden equivalent onset 
by local tempo estimation. Then we propose two func-
tional approximations to reveal relative onset location 
within each rolled chord. In the following sections, we 



  

 

use n to denote the total number of chords of a piece of 
music and m to denote the total number of performances 
of a piece of music. 

5.1. Absolute Location of Equivalent Onset 

If local tempo around rolled chords is stable, equivalent 
onsets can be linearly interpolated from neighboring on-
sets. We consider the melody notes within 2 beats of 
rolled chords and transfer the equivalent onset estimation 
problem into a beat estimation problem.  

Formally, if the current chord index is 𝑖, we denote its 
score onset and equivalent performance onset by 
𝑎𝑐𝑐𝑜𝑚!!  and 𝑎𝑐𝑐𝑜𝑚!! , respectively. We do equivalent 
onset estimation based on the melody notes whose onsets 
are within the range of 𝑎𝑐𝑐𝑜𝑚!! − 2, 𝑎𝑐𝑐𝑜𝑚!! + 2 . To 
be more specific, we first estimate a linear mapping be-
tween performance onsets and score onsets of the melody 
notes within this range. Then, if we denote the slope and 
the intercept of this linear mapping as 𝛼 and  𝛽, respec-
tively, we can find the equivalent onset by: 

 𝑎𝑐𝑐𝑜𝑚!! =   𝛼 ∙ 𝑎𝑐𝑐𝑜𝑚!! +   𝛽 (1) 

 

Figure 2. An illustration of equivalent onset esti-
mation by local linear mapping. 

This process is illustrated by Figure 2, in which the ‘+’ 
symbols represent the melody notes and the circle sym-
bols represent accompaniment rolled chord. The line rep-
resents the tempo map computed by linear mapping and 
the star point, on the line at score time 9, represents the 
equivalent onset computed by equation (1). 

5.2. Relative Location of Equivalent Onset  

Once the absolute location of equivalent onset is estimat-
ed, we present two methods to model its relative location 
within rolled chords: the ratio model and the constant 
offset model. For both models, we consider the 𝑎𝑐𝑐𝑜𝑚!! 
computed in the last section as the ground truth and find 
the models’ parameters by minimizing the difference be-
tween the models’ predictions and the ground truth. 

5.2.1 Ratio Model 

The ratio model assumes that equivalent onset is decided 
by the first and last onset of a rolled chord as in the fol-
lowing equation: 

𝑎𝑐𝑐𝑜𝑚!!
!(𝑟) = (1 − 𝑟) ∙ 𝑎𝑐𝑐𝑜𝑚!!

! + 𝑟 ∙ 𝑎𝑐𝑐𝑜𝑚!!
!         (2) 

In equation (2), 𝑎𝑐𝑐𝑜𝑚!!
!  and 𝑎𝑐𝑐𝑜𝑚!!

!  refer to the 
first and last note onsets in a rolled chord respectively. 𝑟 
is the parameter that characterizes the relative location of 
equivalent onset. According to the value of 𝑟, the equiva-
lent onset can be located as follows: 
𝑟 < 0:  equivalent onset is before the first onset of the 

rolled chord. 
0 ≤ 𝑟 ≤ 1: equivalent onset is between first onset and 

the last onset of the rolled chord. 
𝑟 > 1:  equivalent onset is after the last onset of the 

rolled chord. 
For each piece of music, total number of chords is 𝑛 

and total number of performances is 𝑚, we find the opti-
mal r value by equation (3): 

𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛
!

𝑎𝑐𝑐𝑜𝑚!! − 𝑎𝑐𝑐𝑜𝑚!!
!(𝑟)   

!

!!!

!

!!!

                    (3) 

5.2.2 Constant Offset Model 

The constant offset model assumes that the equivalent 
onset is decided by the first onset plus some constant off-
set 𝑠. Formally, 
 𝑎𝑐𝑐𝑜𝑚!!

! 𝑠 = 𝑎𝑐𝑐𝑜𝑚!!
! + 𝑠 (4) 

Similar to ratio model, we find the optimal 𝑠 value by 

𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛
!

𝑎𝑐𝑐𝑜𝑚!! − 𝑎𝑐𝑐𝑜𝑚!!
!(𝑠)

!

!!!

!

!!!

                  (5) 

6. ONSET SPAN 

For onset span, we focus on a more fundamental statisti-
cal problem: Do pianists make different interpretations 
for different chords or performances? As random varia-
bles, are all onset spans drawn from the same distribution, 
or are there different distributions for different chords or 
performances? In this section, we answer this question by 
using Analysis of Variance (ANOVA). We begin by in-
troducing the basic idea of ANOVA and then link it with 
our problem step by step. 

6.1. One-way ANOVA for Chord Effect 

One-way ANOVA can provide a statistical test of wheth-
er the means of several groups of data are identical [14]. 
Formally, if there are n groups indexed by 𝑖 and   𝜇! de-
notes the mean of group 𝑖, the null hypothesis and the 
alternative hypothesis are:   

 𝐻!: 𝜇! = 𝑢! =   ⋯ = 𝜇! (6) 

 𝐻!:  ∃𝑖, 𝑖′:   𝜇! ≠ 𝜇!! (7) 
Generally speaking, one-way ANOVA computes an F-

test statistic, which is the ratio of variance between 
groups to the variance within groups. If different group 
means are close to each other, this F-test statistics will 
have a relatively low value and hence retain the null hy-
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pothesis. On the other hand, if this F-test statistics is 
greater than a certain threshold, the null hypothesis will 
be rejected. 

Now let us link this setting to our problem. When 
checking whether the onset spans of different chords are 
drawn from the same distribution, each “group” corre-
sponds to a chord and the group members correspond to 
the onset spans of a particular chord in different perfor-
mances. In Figure 3, we can see the distributions of the 
onset span for each chord in Danny Boy. The goal is to 
test whether or not the means of the bars in the boxplot 
are equal to each other. 

 

Figure 3. A boxplot of the onset spans of the 
chords in Danny Boy. 

Remember each piece of music has n chords and m 
performances. Therefore, each piece has 𝑁 = 𝑚 ∙ 𝑛 total 
samples. Referring to the notations in Section 5, the onset 
span of a rolled chord can be expressed via: 

 𝑡! = 𝑎𝑐𝑐𝑜𝑚!!
! − 𝑎𝑐𝑐𝑜𝑚!!

!  (8) 

We use 𝑡!" to denote its value in the 𝑗!! performance. 
Therefore, the group mean in equation (8) can be com-
puted by  

   𝜇! = 𝑡! =
   𝑡!"!

!!!

𝑚
 (9) 

The implementation of one-way ANOVA can be de-
scribed in the following steps. 

First, compute the variation between the groups and 
record its degree of freedom. 
 

𝑆𝑆!"#$ =    𝑡! −   𝑡!"
!

!

!!!

 (10) 

where 𝑡! =
   !!"
!
!!!
!     , 𝑡!" =   

!!"
!
!!!

!
!!!

!
 . The degree of 

freedom of 𝑆𝑆!"#$, 𝑑𝑓!"#$= 𝑛 − 1. 
Second, compute the variation within individual sam-

ples and record its degree of freedom, 
 

𝑆𝑆!"#!!" =    𝑡!"! −   
𝑡!"!

!!!
!

𝑚

!

!!!

!

!!!

!

!!!

 (11) 

The degree of freedom of 𝑆𝑆!"#!!", 𝑑𝑓!"#!!" =   𝑁 − 𝑛. 
Third, compute the F-test statistics by：  

 𝑀𝑆!"#$ =
𝑆𝑆!"#$
𝑑𝑓!"#$

 (12) 

 𝑀𝑆!"#!!" =
𝑆𝑆!"#!!"
𝑑𝑓!"#!!"

 (13) 

 
 𝐹 =

𝑀𝑆!"#$
𝑀𝑆!"#!!"

 (14) 

Finally, compare this F-test statistic against a certain 
threshold to decide whether or not reject the null hypoth-
esis. 

6.2. Repeated-measurement One-way ANOVA for 
Chord Effect 

The previous section considered whether different chords 
have different onset spans. However, an important as-
sumption when using one-way ANOVA is that samples 
from different groups are independent. In our case, each 
piece of music is performed by 5 or 6 different pairs of 
students. Chords played by the same person are clearly 
correlated. To eliminate the dependent factors produced 
by same performers, we use repeated-measurement 
ANOVA to adjust our results.  

The general logic of repeated-measurements ANOVA 
is similar to independent one-way ANOVA. The differ-
ence between those two methods is that repeated-
measurements ANOVA removes variability due to the 
individual differences from the within group variance. 
This process can be understood as removing between-
sample variability, and only keeping the variability of 
how the sample reacts to different conditions (chords). 
We point readers to Ellen and Girden’s book [5] for more 
detailed descriptions. 

6.3. ANOVA for Performance Effect 

Section 6.1 and 6.2 presented the method to inspect 
whether pianists make different interpretations on onset 
span for different chords. Following a very similar proce-
dure, if we just exchange the index of 𝑖 and 𝑗 in 6.1 and 
keep everything else the same, we can inspect whether 
onset spans are interpreted differently for different per-
formances.  

7. EXPERIMENTAL RESULTS 

7.1. Equivalent Onset 

7.1.1 Ratio Model 

Figure 4 shows the results of the ratio model. In the fig-
ure, the x-axis represents the ratio parameter r and the y-
axis represents the relative difference (residual) between 
model estimated equivalent onset and the ground truth 
computed via local tempo estimation. Therefore, small 
numbers indicate better results. Each line corresponds to 
a piece of music. We see that the optimal r values are all 
within the range from 0 to 1, indicating that the equiva-
lent onset consistently lies within the range of note on-
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sets. The optimal values are 0.42 for Danny Boy, 0.13 for 
Ashokan Farewell, and 0.78 for Serenade. 

 
Figure 4. Result of the ratio model. 

7.1.2 Constant Offset Model 

Similar to Figure 4, Figure 5 shows the results of the con-
stant offset model. The only difference is that the x-axis 
now represents the constant offset parameter s. We see 
that the optimal s values are all within the range from 0 to 
20 milliseconds. The optimal values are 16 milliseconds 
for Danny Boy, 1 millisecond for Ashokan Farewell, and 
17 milliseconds for Serenade. Compared to the ratio 
model, the optimal value for constant offset model is 
more consistent.  

 

Figure 5. Result of the constant onset model. 

7.1.3 Comparison with Highest Note Model 

In most expressive performance studies, people use the 
highest note onset as the equivalent onset, which we refer 
to as the “highest note model.” In this section, we com-
pare the results of the ratio model and constant offset 
model with the highest note model.  

Figure 6 shows this comparison between different 
models, in which each sub-graph represents a piece of 
music. Again, smaller number means better prediction. 
Here, we also map the x-axis value of the ratio model to 
seconds by multiplying the ratios by the average onset 
spans. We see that for all the pieces, the ratio model gives 
better predictions than the highest note model. The con-
stant offset model also does a good job on Danny Boy and 
Ashokan Farewell but does not outperform the highest 
note model for Serenade.  

 

(a) Model comparison: Danny Boy. 

 

(b) Model comparison: Ashokan Farewell. 

 

(c) Model comparison: Serenade. 
Figure 6. Model comparison of three songs. 

7.2. Onset Span 

For onset span experiments, we just show the one-way 
ANOVA table since the repeated-measurement adjust-
ments call for extra notations but give us the same con-
clusions. Table 1 shows the result of the one-way ANO-
VA on different chords of Danny Boy. Similar to the re-
sult of Danny Boy, Ashokan Farewell and Serenade all 
have the F-test statistics much larger than the thresholds. 
This indicates that differences between group means are 
significant. Therefore, we see that not all chords are 
drawn from the same distribution. In other words, musi-
cians make different interpretations for onset spans of 
different chords.  
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Variable 𝑆𝑆 𝑑𝑓 𝐹 𝑝 
Between 1.6762 31 7.98 4.29×10!!" 
Within 8.8879 1312   

Table 1. ANOVA for chord effect. 

Table 2 shows the result of the one-way ANOVA on 
different performances of Danny Boy. Again, we get sim-
ilar results for Ashokan Farewell and Serenade, which all 
have a F-test statistic not big enough to reject the null 
hypothesis. This indicates that the differences between 
group means are not significant. Therefore, we see that 
the interpretations for the same chord’s onset span across 
different performances are relatively consistent.  

Variable 𝑆𝑆   𝑑𝑓   𝐹   𝑝  
Between 0.2752 41 0.85 0.7383 
Within 10.289 1302   

Table 2. ANOVA for performance effect. 

8. CONCLUSION AND FUTURE WORK 

In conclusion, we create a database to investigate two 
expressive timing properties of rolled chords in order to 
set a theoretical basis for future expressive performance 
studies. We examined three models to characterize the 
relative location of equivalent onset within rolled chords. 
The ratio model outperforms the other models for all 
pieces of music including the highest pitch model used in 
most research. We also studied onset span. We see that 
differences are not merely random; musicians use differ-
ent interpretations for different chords and the interpreta-
tion for the same chord across different performances are 
relatively consistent. 

This suggests that in future expressive performance 
studies, in order to synthesize a rolled chord properly, we 
can use the equivalent onset as the anchor point (instead 
of the onset of the highest pitch) and consider the onset 
span as an important parameter. Although our ratio model 
improves upon the highest pitch model, the best ratio is 
different for different pieces and the absolute location of 
equivalent onset is still based on estimation. This sug-
gests that in future work we should either look for a way 
to predict the ratio for a given piece of music, or more 
likely, that we should look for an even better model by 
combining objective and subjective evaluations. 
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