A Framework for Coordination and Synchronization of Media

Dawen Liang
Guangyu (Gus) Xia
Roger B. Dannenberg

Schools of Computer Science and Music Carnegie Mellon University

Introduction

■ Suppose you want to get together and play music ... BUT, you're missing a <u>bass</u> player.

credit: Green Day

Human Computer Music Performance

Overview

- Introduction
- (1) Coordination based on beats and measures
- (2) Music notation as an interactive medium
- Short Demo
- Conclusions

Part 1: Coordination of Beats and Measures

HCMP Systems will have:

- Sensors (Keyboads, pedals, touchscreens, accelerometers, machine listening, computer vision, ...)
- Media (MIDI, Audio, Robots, Notation, Lighting control, Sequencers, Effects processors, Mixer automation, Animation, Video, Lasers, ...)
- How do we coordinate and integrate systems?
- Our solution:
 - All systems agree on real time
 - Music position is given in beats and measures always
 - Use mapping from real-time to beats

Mapping from Real Time to Beats

Mapping from real time to beats expressed as: (t_0, b_0, s)

Changing the Mapping

Software: Classes and Objects

Part 2: Music Notation as an Interactive Medium

Summary

- Human Computer Music Performance: Integrating
 - interfaces,
 - automatic music listening, and
 - live performance.
- Coordination of music
 - Position measured in beats and measures
 - Many player objects are coordinated through mapping from time to beats
 - Common algorithm to smoothly update mapping
- Music notation as a user interface
 - Provides intuitive support for musical interaction

Conclusions

- A flexible framework for HCMP
- Open to HCI exploration, using
 - Touch screen
 - Gestures
 - Video sensing
 - Speech
 - Automatic music listening
 - ... to assist in live music performance.

The End

Agreement on Real Time

- -> Clock Synchronization
- Easily done:
 - Send request to server at local time L
 - After delay d, receive "time is G"
 - Estimate server time = local time + (G (L + d/2))
- More sophisticated protocols can reduce error from ~1ms to <10µs (if needed).
- Now we can assume all systems agree on time.

Music Position in Beats and Measures

- Seems obvious, but ...
- Static scores with repeats, D.S., etc. vs
- "Dynamic" scores such as MIDI files are "unfolded"
- See poster with Nicolas Gold in proceedings for more.
- We will (mostly) ignore these problems for now.