SEGMIENTATION, CLUSTERING, AND DISPLAY IN A PERSONAL AUDIO
 DATABASE FOR MUSICIANS

Gus (Guangyu) Xia , Dawen Liang, Roger B. Dannenberg, and Mark J. Harvilla
Carnegie Mellon University, Pittsburgh, PA

Overview

Goal:

Create and organize a musician's personal rehearsal audio database.

Three main components:

Segmentation

Goal: Separate continuous recordings into segments of music pieces based on music/non-music classifier.

Uses Eigenmusic features:

1.PCA of audio in frequency-domain
2.Chose the first 10 principal components

Adaboost classifier:

Implement a non-linear classification surface in the 10dimensional Eigenmusic space by training a sequence linear classifiers (weak learners).

2-state HMM improves classification :

1. States: music vs. non-music
2. Observations: probabilistic interpretation of Adaboost outputs

Clustering

Clustering algorithm (CENS matching):

Clustering evaluation:

1. Two parameters:

- Matching threshold γ \& Segment length t

2. Precision \& Recall

Browsing/Access

Use music notation image files. Manually annotated with measure locations, e.g. by tapping measures while listening to a full recording.

- Display as output: indicates position while listening to recordings
- Display as input: clicking on a location can pop up a menu of recordings that contain the measure

Conclusion

Current status:

- All 3 components are implemented.
- Integrated system implementation in progress
- We have demonstrated the feasibility of a personal musician's rehearsal audio database.
- Automatically organizes recordings from rehearsals.
- Assists musicians to find, listen to, or play along using music notation as an active interface to a library of audio recordings.

CarnegieMellon

